Unsteady near wall residence times and shear exposure in model distal arterial bypass grafts.
نویسندگان
چکیده
Building on previous studies of unsteady flow within model distal bypass grafts we analyse the near wall residence times and shear exposure in a 45 degrees anastomosis under symmetrical and symmetry breaking geometric configurations. We define residence time as the minimum time for a particle to exit a spherical region and shear exposure as a temporal integral of the Huber-Henky-von-Mises criterion along a particle path over a fixed time interval. Decomposing the pulsatile cycle into four equal intervals we find that the interval of peak residence time in the host vessel is from mid-deceleration to peak diastole and peak diastole to mid-acceleration. The asymmetric model is shown to have a significantly lower residence time during these intervals. Considering the shear exposure prior to the residence time evaluation we determine that a higher average shear exposure exists in the asymmetric model associated with the upstream geometry modification. Analysis of the regions of high residence time and shear exposure suggests that the "toe" region and the interface between the "heel" and bulk flow are more significant than the bed and heel region. Although the asymmetric model considered in this study reduces residence times in the host artery, the product of the measure of shear exposure and residence time is not found to be preferable. If shear exposure were to be considered as an important factor in particle activation, the findings imply that for junction optimisation, greater consideration needs to be given both to the local junction asymmetry and upstream influence on the shear history.
منابع مشابه
Comparison of the Graft Angles Effects on the Temporal Wall Shear Stress Gradients in the Aorto-Coronary and Coronary-Coronary Bypasses
In this theoretical study, the effect of various types of bypass graft angles on the flow field, has been investigated specially on the temporal Wall Shear Stress (WSS) on the toe, heel and some locations on the bed of the Left Anterior Descending (LAD) artery at the anastomoses areas in the Aorto-Coronary (AC) and Coronary-Coronary (CC) bypasses. Flow fields in both bypasses with angles of...
متن کاملNewtonian and Non-Newtonian Blood Flow Simulation after Arterial Stenosis- Steady State and Pulsatile Approaches
Arterial stenosis, for example Atherosclerosis, is one of the most serious forms of arterial disease in the formation of which hemodynamic factors play a significant role. In the present study, a 3-D rigid carotid artery with axisymmetric stenosis with 75% reduction in cross-sectional area is considered. Laminar blood flow is assumed to have both Newtonian and non-Newtonian behavior (generalize...
متن کاملAnastomotic Hemodynamics at the Distal End of Lower Extremity Bypass to Improve Patency
rosthetic arterial grafts constructed from expanded polytetrafluoroethylene (ePTFE) have been used for many years as an alternative to autologous vein grafts for lower extremity bypass. When anastomosed above the knee, their performance is similar to that of autologous vein for up to 2 years after operation, thereafter they are associated with a significantly higher failure rate.1 When anastomo...
متن کاملFlow waveform effects on end-to-side anastomotic flow patterns.
PURPOSE Restenosis due to distal anastomotic intimal hyperplasia, a leading cause of arterial bypass graft failure, is thought to be promoted by hemodynamic effects, specifically 'abnormal' wall shear stress patterns. The purpose of this study was to quantify the effects of flow waveform on peri-anastomotic flow and wall shear stress patterns. METHODS Blood flow and wall shear stress patterns...
متن کاملCombined MR imaging and numerical simulation of flow in realistic arterial bypass graft models.
We report methods for (a) transforming a three-dimensional geometry acquired by magnetic resonance angiography (MRA) in vivo, or by imaging a model cast, into a computational surface representation, (b) use of this to construct a three dimensional numerical grid for computational fluid dynamic (CFD) studies, and (c) use of the surface representation to produce a stereo-lithographic replica of t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biorheology
دوره 39 3-4 شماره
صفحات -
تاریخ انتشار 2002